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A plane wall-jet flow is numerically investigated and compared to experiments. The
measured base flow is matched to a boundary-layer solution developing from a
coupled Blasius boundary layer and Blasius shear layer. Linear stability analysis is
performed, revealing high instability of two-dimensional eigenmodes and non-modal
streaks. The nonlinear stage of laminar-flow breakdown is studied with three-
dimensional direct numerical simulations and experimentally visualized. In the direct
numerical simulation, an investigation of the nonlinear interaction between two-
dimensional waves and streaks is made. The role of subharmonic waves and pairing
of vortex rollers is also investigated. It is demonstrated that the streaks play an
important role in the breakdown process, where their growth is transformed from
algebraic to exponential as they become part of the secondary instability of the two-
dimensional waves. In the presence of streaks, pairing is suppressed and breakdown
to turbulence is enhanced.

1. Introduction
1.1. The wall jet

A wall jet may generally be considered as a flow field that is produced by the injection
of a high-velocity fluid in a thin layer close to a surface. The ambient fluid may be
either quiescent or moving at a certain velocity, which typically is lower than the
velocity of the injected jet. Such flows are of great interest to engineers, for instance in
film cooling of gas turbine blades and combustion chambers, in defrosters for auto-
mobiles, and in boundary-layer control of airfoils and flaps. Fundamentally, a wall jet
may, in principle, be treated as a two-layer flow with an inner region that reaches, in
the normal direction, up to the point of maximum velocity and an outer region above.
The inner region is most similar to a wall boundary layer and the outer region has
a flow pattern that is closely related to a free shear layer. The major characteristics
of these layers are different, and in a wall jet, the interaction between these regions
forms a complex flow field.

Two-dimensional wall jets have been considered since the mid 1950s and in a
classical work by Glauert (1956), it was found that a similarity solution exists for the
laminar wall jet. This solution was obtained explicitly and is valid far downstream
from the position of the fluid injection. Glauert’s solution has provided a good basis
for a number of subsequent stability investigations.

1.2. Two-dimensional behaviour

The temporal linear stability of the Glauert wall jet was examined theoretically
by Chun & Schwarz (1967) by solving the Orr–Sommerfeld equation. Bajura &
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Szewczyk (1970) performed hot-wire measurements in an air wall jet and confirmed
the existence of the Glauert wall jet. Furthermore, the stability of the flow to natural
disturbances was studied and the streamwise velocity fluctuation was found to exhibit
two large peaks, one peak on each side of the wall jet core. The amplification rate
of the outer peak was found to be larger, and hence, the instability of the wall
jet is controlled by the outer region. The results are in qualitative agreement with
the linear stability theory by Chun & Schwarz (1967). The dominance of the outer
region was also reported by Bajura & Catalano (1975), who investigated the whole
transition process of a water wall jet. By using flow visualization, they observed the
following five stages in natural transition: (i) formation of discrete vortices in the out-
er region; (ii) vortex pairing in the outer region, resulting in a doubling of the dis-
turbance wavelength, coupled with the possible pairing of vortex-like motions in
the inner region; (iii) lift-off of the wall jet into the ambient fluid; (iv) onset of
turbulent motion; (v) re-laminarization of the upstream flow, until the next vortex
pairing.

By solving the Orr–Sommerfeld equation, Mele et al. (1986) clarified the existence of
two unstable modes in the wall jet. One mode, unstable at low disturbance frequencies,
shows the highest amplitude close to the inflection point in the outer region of the
wall jet, while the other mode, unstable at higher frequencies, attains the highest
amplitude close to the wall. They concluded that the inviscid instability in the outer
region governs the large-scale disturbances while the viscous instability governs the
small-scale disturbances close to the wall. Tumin & Aizatulin (1997) numerically
investigated the instability and receptivity of a laminar wall jet and concluded that
the high-frequency viscous mode can be exited more easily by periodic blowing and
suction through the wall than the low-frequency inviscid mode. Cohen, Amitay &
Bayly (1992) found a new family of laminar self-similar solutions describing the mean
flow of an incompressible two-dimensional wall jet subjected to steady wall blowing
or suction. By applying linear stability theory in the temporal framework for the
family of solutions, it was shown that blowing stabilizes the inviscid mode while
destabilizing the viscous one. The opposite effect was found when suction is applied.
These self-similar profiles were later confirmed experimentally by Amitay & Cohen
(1993). Amitay & Cohen (1997) investigated the interaction of the two different modes
in the wall jet subject to steady wall blowing or suction.

In a low-disturbance environment, the initial stage of the transition process is indeed
defined by two-dimensional eigenmodes growing in the outer layer. Two-dimensional
direct numerical simulations (DNS) have been successfully employed and the transi-
tional process has been studied (e.g. Gogineni, Visbal & Shih 1999; Seidel & Fasel
2001) for forced laminar wall jets. The simulations demonstrate good agreement with
the supporting experiments, at least for the initial stages of transition, where the
three-dimensional activity was relatively weak. Seidel & Fasel (2001) adopted a two-
dimensional DNS-solver to analyse the effect of periodical forcing by a blowing and
suction slot on a laminar wall jet over a heated flat plate. For very low disturbance
amplitudes, the simulations show a good agreement with linear stability theory. For
an increased amplitude, a strong nonlinear distortion of the mean flow was observed.
In particular, the skin friction is reduced markedly, the local maximum velocity is
decreased and the wall heat transfer is increased. It was shown that the large structures,
generated by the forcing, are the main cause for the strong mean flow distortion of
both velocity and temperature. The wall heat transfer was found to increase as large
structures entrain cold fluid from the ambient fluid and hot fluid is convected away
from the wall.
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1.3. Three-dimensional behaviour

Gogineni et al. (1993, 1999) and Gogineni & Shih (1997) investigated a laminar wall
jet undergoing transition using particle image velocimetry (PIV). Their results show
that the transition process is dominated by formation and development of discrete
vortices in both the inner and outer regions and the interaction between them.
Three-dimensionality initiated in the outer region spreads to the inner region and the
emergence of large three-dimensional structures inside the shear layer triggers the
complete breakdown of the flow. The importance of the three-dimensional effects on
the transition process has also been numerically demonstrated. Wernz & Fasel (1996,
1997) performed DNS to study the transition process of the wall jet both for two-
dimensional and three-dimensional disturbances and found that when forcing of high-
amplitude disturbances is introduced, mushroom-shaped structures are ejected from
the wall jet into the ambient fluid. Visbal, Gaitonde & Gogineni (1998) investigated
the breakdown process in a finite-aspect-ratio wall jet by means of DNS and high-
resolution experimental measurements. In the simulation, the experimental base flow
was matched to a parabolic profile at the nozzle outlet. In the spanwise direction, an
incoming sidewall boundary layer was simulated using a hyperbolic tangent distribu-
tion. Two-dimensional forcing was applied by varying the whole base-flow amplitude.
They observed a rapid spanwise breakdown of the two-dimensional rollers into stream-
wise vortices and streaks that start near the sidewalls and propagate toward the
midspan of the wall jet.

The primary instability in inflectional base flows such as free shear layers and wall
jets is a strong inviscid exponential instability resulting in the roll-up of waves into
strong spanwise vortices. These two-dimensional vortices can experience two different
types of secondary instability. For low initial three-dimensional excitation, the secon-
dary instability is subharmonic and associated with vortex pairing, like that observed
by Bajura & Catalano (1975). If the initial three-dimensional excitation is large
enough, a three-dimensional secondary instability is predominant, which changes the
path to turbulence.

It is well-known that in a free shear layer, the development of two-dimensional
motion is coupled with secondary streamwise coherent structures, see Ho & Huerre
(1984), Bernal & Roshko (1986) and Lasheras, Cho & Maxworthy (1986). The three-
dimensional instabilities manifest themselves mainly as counter-rotating streamwise
vortices and are formed in the braids between the coherent two-dimensional rollers.
Numerical studies support these results, see Metcalfe et al. (1987) and Balaras,
Piomelli & Wallace (2001). The location of the formation of the three-dimensionalities
is strongly dependent on the location of the origin and the magnitude of the upstream
three-dimensional perturbations. In fact, the observed three-dimensional small scales
may destroy the two-dimensional large-scale structures for the case of a high level of
random initial disturbances, as is clearly shown by Balaras et al. (2001).

1.4. Outline of the paper

The wall jet constitutes an excellent flow case for studying how a free shear layer
and a wall-bounded flow interacts through a detailed investigation of the interplay
between two- and three-dimensional structures in the flow breakdown to turbulence.
For stability investigations of a high-Reynolds-number wall jet, a description of the
laminar base flow is required, and here this flow is analysed using the boundary-layer
equations. For the case of a non-interacting boundary layer and top shear layer,
a simple solution exists that consists of a coupling of the Blasius boundary layer
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Figure 1. Wall-jet facility.

and the Blasius shear layer. Hereinafter, a wall jet of this type and its downstream
development is referred to as a Blasius wall jet.

In this work, we perform linear stability calculations and highly resolved three-
dimensional DNS of the Blasius wall jet and compare the results to experiments. It is
discovered that in the experimental wall jet, apart from the two-dimensional waves,
almost stationary streaks occur. The streaks interact with the waves and seed the
secondary instability. As a result, the breakdown process happens fast, resulting in
a short laminar part of the wall jet. Such longitudinal structures are likely to exist
in various applications, especially when the wall jet is created through contractions
where vorticity is amplified. In § 2, the equipment and methodology of the experiment
are described. In § 3, the numerical techniques used are presented and in § 4, the results
obtained are presented. Firstly, the measured base flow is matched to the boundary-
layer solution. Results from the linear stability calculations for both eigenmodes and
non-modal streaks are presented and compared with the experiment. Finally, the
nonlinear breakdown process is highlighted by the experiment and examined more
closely by analysing the DNS data. The role of subharmonic waves and pairing is
also investigated.

2. Experimental methods
2.1. Experimental set-up

All experiments were conducted at Chalmers University of Technology in a wall-jet
facility, which is schematically shown in figure 1. The wall jet is formed by the injection
of air through a slot and develops over a large horizontal flat plate of 2.1 m in length
and 3.2 m in width. This plate is made of wood and coated with a thin plastic laminate.
The height of the slot used is 3 mm and the width is 500 mm. A coordinate system is
defined in figure 1 with the x-axis streamwise, y-axis normal to the wall and the
z-axis in the spanwise direction. Equipped with a vertical back wall of 1.2 m height,
located just above the inlet and sidewalls of the same height, the current wall jet can
be considered to operate in quiescent surroundings, since the facility is located in a
large hall (15 × 15 × 8 m3) with negligible room draught.

Air is supplied by a centrifugal fan to the settling chamber, which is equipped
with flow straightening devices; namely, a baffle, perforated plate, honeycombs and
screens. After the settling chamber, the flow enters two smooth contractions of total
ratio 36:1. The measured turbulence level of the outlet flow is sufficiently low, less
than 0.05 % in the frequency range from 10 Hz to 10 kHz. During the measurements,
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the velocity in the middle of the nozzle, U0, is checked by a Pitot–Prandtl tube. The
manometer used, FSO510, is also equipped with sensors for temperature and absolute
pressure readings.

The streamwise velocity component of the wall-jet flow field is measured by a hot
wire, which is monitored by a DANTEC constant-temperature anemometer. A tung-
sten single-wire boundary-layer probe with a wire diameter and length of 5 µm and
0.7 mm, respectively, is operated at an overheat ratio of 1:8. The hot wire is calibrated
in the jet outlet versus the Prandtl tube. Details on the experimental procedure as well
as on the measurement equipment used can be found in Chernoray et al. (2005).
Typically, the calibration resulted in an error of less than 0.5 % for all points in the
calibration range. The hot-wire position traversing mechanism is computer controlled
and can be completely automated for long experimental runs through the definition
of a geometrical mesh of measurement points. Equipped with servo-motors it can
sustain an absolute coordinate system with an accuracy of 10 µm in the horizontal
directions, and 5 µm in the wall-normal direction. The acquisition system is the IOTech
Wavebook 516 sampling module with expansion unit, enabling 16 bit 1 MHz sample
and hold with full analogue and digital triggering options. The software used to
control the sampling and saving of data files is linked into a program for automated,
triggered flow measurements using the traverse system and a pre-defined mesh of
sampling points. The distance between the hot wire and the wall is measured using an
‘electro-optical’ method and is checked before every experimental run. To employ this
method, a strip of electrically conductive foil is glued onto the surface and when one
probe prong touches the surface an electric circuit is closed. The distance between the
wire and the wall when the prong touches the surface is measured optically in this
position. It should be pointed out that the wall-distance measurements are performed
before the hot-wire calibration.

2.2. Artificial disturbances

To use the advantages of a controlled experiment and to study the development of
two-dimensional waves and stationary longitudinal streaks in detail, disturbances are
introduced in the flow artificially.

Time-periodic two-dimensional waves are excited by a loudspeaker situated about
two metres downstream of the nozzle outlet. The signal for the loudspeaker of con-
trolled frequency and amplitude is generated by an analogue output board in a com-
puter and an external amplifier unit. The frequency of the artificial disturbances is
chosen to be 1221 Hz, which is close to the natural flow frequency and detuned
off 50 Hz of the power network. The measurement of the linear instability waves is
performed in a region starting at about one hydrodynamic wavelength downstream
of the nozzle outlet and prior to the downstream distance where significant nonlinear
interactions occur. Such recommendations can be found in the review by Ho &
Huerre (1984) for shear layers and are based mostly on the fact that instability
waves are influenced by the solid edge in a near-field region. It is also recommended
that the acoustic wavelength should be large enough for the assurance of the wave
two-dimensionality, and this length is about 0.3 m for the mentioned frequency of
1221 Hz. Before the experiment, the two-dimensionality of the base flow and that of
the excited waves is carefully checked through measurements and visualizations. To
obtain the amplitude and phase information of the signal, fast Fourier transform
(FFT) is applied to the velocity time traces, see Chernoray et al. (2005) for details.

Stationary longitudinal streaks are introduced in the flow by fine roughness elements
of controlled geometry and a typical height of 40 µm. The roughness elements are
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Figure 2. Plane wall-jet flow.

positioned at the orifice of the wall jet onto the inner surface of the top lip of the
nozzle. To introduce a streaky pattern of a single spanwise scale, typically an array of
five uniformly distributed roughness elements is used. It is decided to introduce five
different streak scales, and accordingly five groups of humps are positioned on the
nozzle. As a result, nearly sinusoidal mean flow modulation is obtained after a short
distance downstream of the nozzle outlet. The evaluation of the streaks is performed
by measurements of (y, z)-velocity planes of two or three spanwise wavelengths. A
cross-sectional plane for each scale is taken with constant steps in the y-direction of
0.15 mm and 0.5 mm in the z-direction, and the corresponding number of points for
each plane is 20 in the wall-normal extent and from 12 to 30 in the spanwise extent,
depending on the spanwise streak scale. Subsequently, the undisturbed base flow is
subtracted and the remaining stationary disturbance is decomposed into spanwise
modes using FFT.

During the measurements, the output signal from the anemometer is amplified and
digitized; post-processing is done using the software package Matlab.

3. Numerical solution methods
3.1. Scaling

Consider an incompressible wall jet over a flat plate as illustrated in figure 2. Through
a slot with height b∗, fluid with exit velocity U0 is blown tangentially along a wall.
The scalings are originating from the boundary-layer approximations. The streamwise
coordinate x is scaled with the length scale l, which is a fixed distance from the slot.
The wall-normal and spanwise coordinates y and z, respectively, are scaled with the
boundary-layer parameter δ =

√
νl/U0, where ν is the kinematic viscosity of the fluid.

The streamwise velocity U is scaled with U0, while the wall-normal and spanwise
velocities V and W , respectively, are scaled with U0δ/ l. The pressure P is scaled with
ρU 2

0 δ2/l2, where ρ is the density of the fluid, and the time t is scaled with l/U0. The
Reynolds numbers used here are defined as Rel = U0l/ν and Reδ =U0δ/ν. It is useful
to note the relations l/δ =Reδ =

√
Rel .

3.2. Linear disturbance equations

The well-known technique based on the parabolized stability equations (PSE)
(Bertolotti, Herbert & Spalart 1992; Herbert 1997) deals with the spatial evolution of
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exponentially growing eigenmodes. These equations are scaled with a suitable scaling
for modal waves, e.g. the streamwise and normal disturbance velocities are assumed
to be of the same order. However, in the last decade there has been an increasing
interest in the algebraically growing non-modal Klebanoff modes (Klebanoff 1971;
Westin et al. 1994; Andersson, Berggren & Henningson 1999; Luchini 2000). The
two growth scenarios are associated with different scales. The governing equations for
non-modal disturbances are scaled with the boundary-layer scalings (see Andersson
et al. 1999). Here we summarize a set of stability equations valid for both algebraically
and exponentially growing disturbances, given by Levin & Henningson (2003). For
further details, see that investigation.

We want to study the linear stability of a high-Reynolds-number flow. The non-
dimensional Navier–Stokes equations for an incompressible flow are linearized around
a two-dimensional, steady base flow (U (x, y), V (x, y), 0) to obtain the stability
equations for the spatial evolution of three-dimensional time-dependent disturbances
(u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), p(x, y, z, t)). The disturbances, that are scaled
as the base flow, are taken to be periodic in the spanwise direction and time. This
allows us to assume solutions of the form

f = f̂ (x, y) exp

(
iReδ

∫ x

x0

α(x) dx + iβz − iωt

)
, (3.1)

where f represents either one of the disturbances u, v, w or p. The complex streamwise
wavenumber α captures the fast wavelike variation of the modes and is therefore
scaled with 1/δ, but α itself is assumed to vary slowly with x. The x-dependence in
the amplitude function f̂ includes the weak variation of the disturbances. The real
spanwise wavenumber β and the real disturbance angular frequency ω are scaled in a
consistent way with z and t , respectively. Introducing (3.1) in the linearized Navier–
Stokes equations and neglecting third-order terms in 1/Reδ or higher, we arrive at
the parabolized stability equations in boundary-layer scalings

ûx + iReδαû + v̂y + iβŵ = 0, (3.2a)

(Ux + iReδαU − iω)û + Uûx + V ûy + Uyv̂ +
p̂x

Re2
δ

+
iαp̂

Reδ

= ûyy − k2û, (3.2b)

(Vy + iReδαU − iω)v̂ + Uv̂x + Vxû + V v̂y + p̂y = v̂yy − k2v̂, (3.2c)

(iReδαU − iω)ŵ + Uŵx + V ŵy + iβp̂ = ŵyy − k2ŵ, (3.2d)

where k2 = α2 + β2. All the terms are generally of the first or the second order except
the p̂x/Re2

δ-term, in (3.2b), which is of the third order for the algebraic instability
problem and the Vxû-term, in (3.2c), which is of the third order for the exponential
instability problem. Both of these terms, however, have to be included in a general
formulation of the problem. Unfortunately, the p̂x/Re2

δ-term introduces numerical
instability, setting a lower limit of the streamwise step size (Li & Malik 1994), as is
the case for all PSE-formulations.

We are interested in solutions subject to no-slip conditions at the plate and vanishing
at the wall-normal position ymax well outside the wall jet. The boundary conditions
in the wall-normal direction can then be written

û = v̂ = ŵ = 0 at y = 0,

û = v̂ = ŵ = 0 at y = ymax.

}
(3.3)
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The set of equations is nearly parabolic in the streamwise coordinate and is marched
forward from an initial position x0 to a final position x1. Given the initial conditions

û = û0(y), v̂ = v̂0(y), ŵ = ŵ0(y) at x = x0, (3.4)

the wavenumber β and the angular frequency ω, the initial-boundary-value problem
is solved from x0 to x1 to obtain the downstream development of the disturbance.

The disturbance growth is generally measured by the average change in the kinetic
energy of the fluid. In spatially evolving investigations, a commonly used quantity to
represent this change is the disturbance energy defined as

E(x, β, ω, Rel) =

∫ ymax

0

(Rel |u|2 + |v|2 + |w|2) dy = Êeθ , (3.5)

where

Ê =

∫ ymax

0

(Rel |û|2 + |v̂|2 + |ŵ|2) dy, θ = −2Reδ

∫ x

x0

αi dx. (3.6)

3.2.1. Exponential growth

Here we consider solutions to (3.2)–(3.4) associated with wavelike disturbances, i.e.
where α in the phase function in (3.6) is order unity. As both the amplitude and
phase functions depend on x, one more equation is required. We require that both the
amplitude function and the wavenumber α change slowly in the streamwise direction,
and specify a normalization condition on the amplitude function∫ ymax

0

(Rel ûûx + v̂v̂x + ŵŵx) dy = 0, (3.7)

where the bar denotes complex conjugate. Other conditions are possible and are
presented in the paper by Bertolotti et al. (1992). The normalization condition specifies
how much growth and sinusoidal variation are represented by the amplitude and
phase function, respectively. The stability problem (3.2)–(3.4) and (3.7) have to be
solved iteratively in each streamwise step. The numerical method solving the stability
equations is based on a spectral collocation method involving Chebyshev polynomials.
Details about the numerical scheme can be found in Andersson et al. (1999) and
Hanifi, Schmid & Henningson (1996). The initial condition (3.4) is taken as the least
stable eigenfunction of the Orr–Sommerfeld and Squire equations with corresponding
eigenvalue α(x0). Since the initial condition does not capture non-parallel effects, there
will be a region in the beginning of the domain that includes some errors (e.g. see
figure 9). The size of these errors and the length of this region are dependent of the
type of base flow and how non-parallel it is.

3.2.2. Optimal disturbances

Now we consider solutions to (3.2)–(3.4) with α = 0, giving rise to disturbances with
weak streamwise variations. We are interested in maximizing the disturbance energy
(3.5), at the downstream position x1, by optimizing the initial disturbance at x0 with
given initial energy. That is, we want to maximize the disturbance growth defined by

G(x0, x1, β, ω, Rel) =
E(x1)

E(x0)
. (3.8)

When going to the limit of large Reynolds number, the maximum growth will, because
of the difference in order between the terms in the disturbance energy (3.5), be obtained
for initial disturbances with a zero streamwise velocity component. Furthermore,
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provided that û1 is non-zero, v̂1 and ŵ1 can be neglected and the Reynolds-number-
independent growth can be simplified to

G = lim
Rel→∞

G

Rel

=

∫ ymax

0

|û1|2 dy

∫ ymax

0

(|v̂0|2 + |ŵ0|2) dy

=
(û1, û1)u
(q, q)q

. (3.9)

The last identity defines the appropriate inner products, where q = (v̂0, ŵ0)
T . The

optimization problem in the large-Reynolds-number limit is defined by maximizing
(3.9) and concerns the optimization of the initial disturbance q for given values of x0,
x1, β and ω. Details about the derivation of the optimization procedure can be found
in the Appendix and in Levin & Henningson (2003) and details about the numerical
scheme is given in Andersson et al. (1999) and Hanifi et al. (1996). The numerical
method solving the forward problem (3.2)–(3.4) and the backward problem (A 5)–(A 7)
is based on a spectral collocation method involving Chebyshev polynomials.

3.3. DNS techniques

3.3.1. Numerical methods

The numerical code (see Lundbladh et al. 1999) uses spectral methods to solve the
three-dimensional time-dependent incompressible Navier–Stokes equations. The dis-
cretization in the streamwise and spanwise directions make use of Fourier series ex-
pansions, which enforces periodic solutions. The discretization in the normal direction
is represented with Chebyshev polynomial series. A pseudospectral treatment of the
nonlinear terms is used. The time advancement used is a second-order Crank–
Nicolson method for the linear terms and a four-step low-storage third-order
Runge–Kutta method for the nonlinear terms. Aliasing errors arising from the
evaluation of the pseudospectrally convective terms are removed by dealiasing by
padding and truncation using the 3/2-rule when the FFTs are calculated in the
wall-parallel planes. In the normal direction, it has been found that increasing the
resolution is more efficient than the use of dealiasing.

Flows such as boundary layers and wall jets are spatially growing and to fulfil the
necessary periodic boundary condition in the streamwise direction, required by the
spectral discretization, a fringe region (see Nordström, Nordin & Henningson 1999)
is added in the downstream end of the computational domain. In this region, the
function λ(x) is smoothly raised from zero and the flow is forced to a desired solution
v in the following manner

∂u
∂t

= NS(u) + λ(x)(v − u) + g, (3.10)

∇ · u = 0, (3.11)

where u is the solution vector and NS(u) the right-hand side of the (unforced)
momentum equations. Both g, which is a disturbance forcing, and v may depend on
the three spatial coordinates and time. The forcing vector v is smoothly changed
(blended) from the undisturbed wall-jet solution of the boundary-layer equations at
the beginning of the fringe region to the prescribed inflow velocity vector, which is
the Blasius wall jet shown in figure 3(a). In the case of forcing a disturbance in the
flow, it is also added to the forcing vector in the end of the fringe region. The fringe
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Figure 3. Streamwise development of the Blasius wall jet calculated with the boundary-layer
equations. (a) x = 1, (b) 3.14, (c) 20. Far downstream, the solution approaches a Glauert
similarity solution evolving from a different virtual origin. The Glauert solution (− − −) is
shown for comparison in (c).

function is conveniently written as

λ(x) = λmax

[
S

(
x − xstart

∆rise

)
− S

(
x − xend

∆fall

+ 1

)]
, (3.12)

where λmax is the maximum strength of the damping, xstart and xend are the start and
end of the fringe region, respectively, and ∆rise and ∆fall are the rise and fall distance
of the damping function. S(ξ ) is a smooth step function with continuous derivatives
of all orders defined by

S(ξ ) =




0, ξ � 0,

1

/[
1 + exp

(
1

ξ − 1
+

1

ξ

)]
, 0 < ξ < 1,

1, ξ � 1.

(3.13)

This method damps disturbances flowing out of the physical region and smoothly
transforms the flow to the desired inflow state, with a minimal upstream influence
(Nordström et al. 1999).

At the wall, a no-slip boundary condition is set and at the free-stream position ymax,
a generalized boundary condition is applied in Fourier space with different coefficients
for each wavenumber. It is non-local in physical space and takes the form

∂ û
∂y

+ kû =
∂ v̂0

∂y
+ kv̂0, (3.14)

where û is the Fourier transform of u. Here, v0 denotes the blended wall-jet solution
of the boundary-layer equations taken as the initial condition and v̂0 its Fourier
transform. In the spanwise direction, periodic boundary condition is set.
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3.3.2. Disturbance generation and numerical parameters

The present numerical implementation provides several possibilities for disturbance
generation. Disturbances can be included in the desired solution v, thereby forcing
them in the fringe region, by a body force g and by blowing and suction at the wall
through non-homogeneous boundary conditions.

To study the instability and interaction of time-periodic two-dimensional waves vw

and stationary longitudinal streaks vs , the velocity fields are added to the blended
Blasius wall-jet solution v0 to give a forcing vector of the form v = v0 + vw + vs . The
waves and streaks can then be forced in the fringe region. The two-dimensional waves
vw =(u, v, 0) are taken from solutions of the parabolized stability equations (3.2) with
β = 0. The vector, which can be derived from (3.1) takes the form

vw = f c cos ωt + f s sin ωt, (3.15)

where

f c = ( f̂ r cos ar − f̂ i sin ar) e−ai, f s = ( f̂ r sin ar + f̂ i cos ar) e−ai (3.16)

and

ar =

∫ x

x0

αr dx, ai =

∫ x

x0

αi dx, (3.17)

where the subscripts r and i denote real and imaginary part, respectively. The spanwise
periodic streaks are taken from optimized solutions of the stability equations (3.2)
with ω = 0 and α =0. The forcing vector takes the form

vs = (ûr cos βz, v̂r cos βz, −ŵi sin βz). (3.18)

The size of the computational box used for the simulations presented in this paper
is (xl × yl × zl) = (3.09 × 206 × 29.8). The width of the box is set to fit one spanwise
wavelength of the forced streaks. The Reynolds number at the initial location of
the box where x =1 is Reδ = 173. The resolution is (nx × ny × nz) = (540 × 541 × 64),
which is about 18.7 million points. Dealiasing is activated in the streamwise and
spanwise directions. This increases the computational resolution in the simulation
with a factor of 2.25 (1.5 in each direction). A shared memory parallelization is
implemented in the numerical code. The current study uses 16 nodes, each with two
processors. With a wall clock time of 60 h, a typical simulation calculates about one
time unit. The parameters for the fringe region are xstart =3.49, xend = 4.09,
∆rise = 0.199, ∆fall = 0.0996 and λmax = 1.0.

The waves and streaks are forced in the fringe region in a similar manner to that of
Brandt & Henningson (2002), who made use of the same spectral code to study the
transition of streamwise streaks in the Blasius boundary layer. The forcing is turned
on smoothly in both space and time. The steamwise amplitudes of the waves and
streaks are prescribed at the end of the fringe region to 0.001 and 0.03, respectively.

When only two-dimensional waves are forced in the fringe region, random noise is
added to the initial field in order to introduce three-dimensionality to the flow. The
noise is in the form of Stokes modes, i.e. eigenmodes of the flow operator without
the convective term. These modes fulfil the equation of continuity and the boundary
condition of vanishing velocity at the wall. While the simulation is running, no more
forcing of three-dimensional noise is required since a small level of noise passes
through the fringe region. However, the fringe region damps incoming disturbances
to an energy level below about 10−7.
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4. Results
4.1. Matching the base flow

Most of the numerical studies of wall jets have concerned the similarity solution of
Glauert (1956), which is an asymptotic solution. However, a consideration of the near
field of the wall jet in this investigation shows that the flow has not achieved the
self-similar Glauert profile. To investigate the flow close to the slot at a rather high
Reynolds number, it is necessary to find another base flow more suitable to match
with the experiment.

Consider a top-hat profile through a slot with height b located at x =0, see figure 2.
Immediately downstream of the slot, a boundary layer develops at the wall and a
shear layer develops in the upper part of the top-hat profile, independently of each
other. Further downstream, the boundary layer and the shear layer begin interacting
and the local maximum velocity slows down. Our solution consists of a coupling of
the Blasius boundary layer and the Blasius shear layer as an initial condition to the
boundary-layer equations. The two solutions, which are both similarity solutions to
the Blasius equation with different boundary conditions, are discussed in Schlichting
(1979). In the boundary-layer scalings, the Blasius similarity equation reads

2f ′′′ + ff ′′ = 0, (4.1)

where f (η) is the non-dimensional streamfunction and the prime denotes derivatives
with respect to the similarity variable η. The base flow can then be written

U = f ′, V = 1
2
(ηf ′ − f ). (4.2)

For the boundary layer, the similarity variable ηb relates to the non-dimensional
coordinates as y =

√
xηb and the boundary conditions read

ηb = 0: f = 0, f ′ = 0; ηb → +∞: f ′ = 1. (4.3)

The shear layer has the displaced similarity variable ηs = ηb − b and is subject to the
boundary conditions

ηs → −∞: f = ηs − 2Vb, f ′ = 1; ηs → +∞: f ′ = 0, (4.4)

where Vb denotes the normal component of the free-stream velocity taken from
the boundary-layer similarity solution, to fulfil continuity in the normal velocity
throughout the wall jet. The two similarity solutions are connected to each other at
the location x = 1 and form the boundary-layer and shear-layer regions in the Blasius
wall jet. The downstream development is computed with the boundary-layer equations.
Figure 3 shows the Blasius wall jet and its streamwise development calculated with
the boundary-layer equations. The location in figure 3(a) corresponds to the initial
condition at x = 1. Figure 3(b) shows the location x = 3.14, where the interaction of
the boundary layer and the shear layer has just begun and the maximum velocity is
Um = 0.99U0. Far downstream at the location x = 20 (figure 3c), the flow approaches
the Glauert (1956) solution shown as the dashed line.

In the experiment, thin boundary layers are already formed in the nozzle. Therefore,
the virtual slot is placed a distance l upstream of the nozzle outlet with a virtual slot
height b∗, different from the height of the experimental nozzle opening. In order to
match the theoretical base flow to the experiment, l, which is taken as the streamwise
scale, and b∗ have to be chosen. To do so, the boundary-layer and shear-layer regions
of the measured wall jet are scaled with local scalings and compared to the Blasius
boundary and shear-layer similarity solutions, see figure 4. The experimental data are
taken from 1 mm, 6 mm, 11 mm and 16 mm downstream of the nozzle outlet. The
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Figure 4. Comparison of the computed base flow (—) for Reδ = 173 with experimental results
at 1mm (�), 6 mm (�), 11mm (�) and 16mm (�) downstream of the nozzle outlet. The
experimental data are scaled with the local boundary-layer parameter δ and local maximum
velocity Um and fitted to the computed similarity solutions with l = 29 mm and b∗ = 2.06 mm.
(a) Boundary-layer region. (b) Shear-layer region.

x: 1.0 1.03 1.21 1.38 1.55 2.0 3.14 20.0
x∗ − l (mm): 0 1 6 11 16 29 62 551

Table 1. Streamwise locations with the corresponding dimensional distances downstream of
the experimental nozzle outlet.

streamwise locations and their corresponding dimensional distances downstream of
the experimental nozzle outlet used for the measurements are summarized in table 1.
The maximum outlet velocity is U0 = 15.4 m s−1, corresponding to the Reynolds
number Reδ = 173. The best matching is achieved for l = 29 mm and b∗ = 2.06 mm
corresponding to the non-dimensional virtual slot height b = 12.3. The normal scale
is δ =

√
νl/U0 = 0.168 mm.

The Blasius wall jet can be made independent of the slot height b, downstream of
the point of interaction of the shear layer and the boundary layer, by introducing the
coordinates

ζ =
y

b
, ξ =

x

b2
. (4.5)

If we rescale the downstream distance measured from the experimental nozzle opening
with the virtual slot height, locations downstream of the point of interaction may be
written

x∗ − l

b∗ = Reδ

(
bξ − 1

b

)
, (4.6)

where the star denotes dimensional variables. Inserting the value of the slot height
used for our Blasius wall jet, the value of the right-hand side of (4.6) is 1.55Reδ at
the location shown in figure 3(c). Hence, given the top-hat profile blowing out from
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Figure 5. Comparison of the computed base flow (—) for Reδ = 173 with experimental
results (�). The graphs show (a) the upper and (b) lower jet half-widths δu

0.5 and δl
0.5,

respectively.

a slot, the Glauert wall jet is reachable only many slot height distances downstream
of the slot in the case when the flow Reynolds number is high. As the flow Reynolds
number decreases, the distance required to approach this solution also decreases.
However, given a different initial condition at the slot such as a plane Poiseuille flow,
the Glauert wall jet may be reached earlier. Bajura & Szewczyk (1970) experimentally
obtain a very good agreement to the Glauert wall jet 18 slot heights downstream
of the nozzle outlet for a jet-exit Reynolds number of 377 based on the slot height.
Similar results were obtained by Cohen et al. (1992) 30 slot heights downstream of
the nozzle for a Reynolds number of 725. For comparison, the Reynolds number
Reδ =173 in this investigation corresponds to 2120 based on the virtual slot height
b∗, and 3080 based on the height of the experimental nozzle opening.

It can be seen in figure 4 that the agreement between the experiment and the
theory in the lower part of the boundary-layer region, shown in figure 4(a), and
in particular the upper part of the shear-layer region, shown in figure 4(b), is not
perfect. The experimental data are, however, approaching the theoretical solution
further downstream. A slight difference in the upper part of the boundary-layer region
remains as the flow evolves downstream. The agreement between the experiment and
the theory near the jet core in the shear-layer region is excellent. The main reason for
the disagreement in the upper part of the wall jet is the influence of the nozzle. A jump
of the boundary condition occurs on the top lip of the nozzle as the flow leaves and
a kink in the experimental velocity data can be observed. With increased downstream
distance, the influence of the nozzle disappears and the agreement becomes better.

Figures 5(a) and 5(b) show the streamwise development of the upper and lower jet
half-widths δu

0.5 and δl
0.5, respectively, which are the distances from the wall where the

velocity reaches half the local maximum velocity. The experimental data are measured
with 1 mm steps to 17 mm downstream of the nozzle outlet. The whole scaled flow
is shown in figure 6 for four downstream locations x = 1.03, 1.21, 1.38, 1.55 and the
measured upper and lower jet half-widths are indicated with crosses.
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Figure 6. Comparison of the computed base flow (—) for Reδ = 173 with experimental results
(�) at 1mm, 6mm, 11mm and 16mm downstream of the nozzle outlet (the non-dimensional
locations are indicated in the figure). ×, upper and lower jet half-widths.

4.2. Linear stability analysis

In this section, the stability of the computed base flow at Reδ = 173 is investigated
by means of the linear parabolized stability equations and the results are compared
with the measurements. The instability with respect to two-dimensional eigenmodes
and non-modal streaks is investigated.

4.2.1. Two-dimensional waves

The natural spectra of the streamwise velocity component measured in the position
of maximum disturbance in the wall-normal direction is shown, at x = 1.38 (− − −)
and x = 1.55 (—), in figure 7(a). The reduced frequency is defined as F = 106ω/Rel .
It is clear that under natural conditions, the wall jet operates in unforced mode
and a broad band of frequencies amplifies. The root mean square of the broadband
disturbance amplitude at x = 1.55 is approximately 0.5 % of the jet exit velocity. This
allows us to consider the flow to be laminar down to this location under natural
conditions. Figure 7(b) shows the computed physical growth rate, defined as

σ (x) =
1

Reδ

1√
Ê

∂
√

Ê

∂x
− αi, (4.7)

versus the reduced frequency. It is clearly visible that in the stability calculations,
as well as in the experiment, the most amplified frequency decreases with increased
streamwise location. The most amplified frequency of the Blasius shear layer predicted
with inviscid stability theory by Monkewitz & Huerre (1982) is about 480, which is
very close to the peak observed for the location x = 1 in figure 7(b). This suggests
that the wall jet operates in the shear-layer mode.

Subsequently, the flow is artificially forced in the experiment and characteristics of
the instability waves under controlled conditions are studied. The frequency of the
artificial disturbances is 1221 Hz corresponding to ω = 14.4, or F = 482. This is close
to the natural dominating flow frequency, leading to breakdown. In figure 7(c), the
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Figure 7. Frequency spectra at x = 1.38 (− − −) and x = 1.55 (—) for natural case (a)
and forced by a loudspeaker at 1221 Hz (F = 482) with amplitude 4% at x = 1.55 (c).
(b) Computed growth rates σ for Reδ = 173 at different streamwise locations corresponding
to 0mm, 6mm, 11mm and 16mm downstream of the nozzle outlet (the non-dimensional
locations are indicated in the figure).

forced spectrum, for a relatively large forcing amplitude (4 % at x = 1.55) is shown
for the same streamwise locations as the natural spectrum. At the location x =1.55,
nonlinear effects start to be apparent and peaks of higher harmonics of the main
frequency can be seen in the spectra. The first superharmonic has about 10 % of the
main harmonic amplitude. The forcing of the flow leads to a strong coherence of the
disturbance around the excitation frequency, as can also be seen for free shear layers.

Since the Blasius wall jet is a composition of both a boundary layer and a free shear
layer, we should expect the possibility of two co-existing unstable eigenmodes, one
associated with the viscous instability of the boundary layer in the inner region and
the other with the inviscid instability of the shear layer in the outer region. Mele et al.
(1986), among others, elaborated the role of these two instability modes of the Glauert
wall jet. For the low Reynolds number specified in the current investigation, the PSE-
approach does not detect the inner mode, instead it converges to the outer mode.
In order to study the inner mode, the Orr–Sommerfeld equation is solved. Thereby,
a comparison of the PSE-technique with the parallel theory can also be done. Such
comparisons have been made by Bertolotti et al. (1992) for the Blasius boundary layer.

Figure 8 shows the streamwise component of Orr–Sommerfeld eigenfunctions at
x = 1 for F =482 and Reδ = 173. The inner mode is shown as the solid line in
figure 8(a) while the dashed line shows the corresponding mode of the Blasius
boundary layer. As expected, the agreement between the profiles of the two modes
is perfect in the inner region close to the wall, whereas two additional small peaks
persist in the outer region of the wall-jet mode. In figure 8(b), the comparison between
the outer mode and the corresponding mode of the Blasius shear layer is shown. Here,
as expected, the profiles of the modes agree perfectly in the outer region, whereas the
wall-jet mode has a small peak in the inner region. However, the agreement between
the inner and outer modes of the Blasius wall jet with the corresponding modes of
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Figure 8. Streamwise component of Orr–Sommerfeld eigenfunctions at x = 1 for F =482 and
Reδ = 173. The grey line shows the Blasius wall jet. (a) Inner mode (—) compared with the
corresponding mode of the Blasius boundary layer (− − −). (b) Outer mode (—) compared
with the corresponding mode of the Blasius shear layer (− − −).

the Blasius boundary layer and Blasius shear layer, respectively, decreases further
downstream as the boundary-layer region and the shear-layer region of the Blasius
wall jet begin to interact.

At the given Reynolds number and frequency, the outer mode is the only unstable
mode of the Blasius wall jet. The critical Reynolds number for the Blasius wall jet is
2.15, this is when the outer mode becomes unstable at F = 23 000. The corresponding
critical Reynolds number for the Blasius shear layer is zero. The inner mode becomes
unstable at a significantly higher Reynolds number of 272 at F = 260. The
corresponding critical Reynolds number for the Blasius boundary layer is 302 at
F = 230. As a comparison, it can be mentioned that the critical Reynolds number
for the Glauert wall jet is 13.6 at F = 9600.

Figure 9 shows the imaginary part of Orr–Sommerfeld eigenvalues for Reδ = 173.
The inner and outer modes of the Blasius wall jet are shown as solid lines while
dashed lines show the corresponding modes of the Blasius boundary layer and the
Blasius shear layer, respectively. The streamwise dependency for F =482 is shown
in figure 9(a, c). The inner mode of the Blasius wall jet, shown in figure 9(a), is
stable, but not as stable as the corresponding mode of the Blasius boundary layer.
The outer mode, shown in figure 9(c), is unstable, but the corresponding mode of the
Blasius shear layer is slightly more unstable. In both cases, the difference increases
downstream. In figure 9(c), a comparison with the PSE-solution is made. The dots
represent each streamwise step of the computation, which is seen to converge at about
x = 0.7. Downstream of this location the agreement with parallel theory is excellent,
indicating that non-parallel effects are small. The local theory seems to slightly
underpredict the amplification rate. In order to elaborate the effect of the base-flow
disagreement on the stability characteristics, the Orr–Sommerfeld equation is solved
for the experimental base flow. First, the experimental base flow is interpolated and
extrapolated with continuous first and second derivatives. The imaginary part of the
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Figure 9. Imaginary part of Orr–Sommerfeld eigenvalues for Reδ = 173. (a, c) Streamwise
dependency for F = 482. The dotted line in (c) shows a comparison with the PSE-solution.
A comparison with the Orr–Sommerfeld solution of the interpolated experimental base flow
is also made (�) for x = 1.21, 1.38, 1.55. (b, d) Frequency dependency at x =1 (black lines)
and x = 1.38 (grey lines). (a, b) Inner mode (—) compared with the corresponding mode of
the Blasius boundary layer (− − −). (c, d) Outer mode (—) compared with the corresponding
mode of the Blasius shear layer (− − −).

streamwise wavenumber at x = 1.21, 1.38, 1.55, from these calculations, is shown as
the circles in figure 9(c). It reveals a large difference in amplification rate which is
due to the disagreement between the shear-layer regions in the measured and the
theoretical base flows. The frequency dependency at x = 1 (black lines) and x = 1.38
(grey lines) of the inner and outer modes is shown in figure 9(b) and 9(d), respectively.

Figure 10 shows the amplitude and phase distribution at three downstream locations
x = 1.21, 1.38, 1.55 for the three different forcing amplitudes 0.3 % (�), 1.1 % (�) and
1.7 % (�) compared with the computed PSE-results (—). The three experimental
amplitude values are measured at the streamwise location x =1.55. It can be noted
that the agreement between the experiment and the linear stability computation
is acceptable, apart from the upper part of the shear-layer region. The deviation
there is most probably because the waves in the experiment are not fully developed
eigenmodes this close to the nozzle outlet. Solving the Orr–Sommerfeld equations for
the interpolated experimental base flow reveals that the difference in the base flow
does not affect the shape of the eigenmodes much. However, the agreement between
the outer part of the measured and computed amplitude distributions improves
downstream. The disturbance has a typical shape and the peak in the shear-layer
region is in antiphase to the peak near the wall in the boundary-layer region.

The downstream development of the disturbances is demonstrated in figure 11(a)
and 11(b), where the maximum u-velocity amplitude and phase, respectively, are
shown versus the streamwise coordinate. The three cases of forcing are compared
with the computation and the same symbols are used as in figure 10. The demonstrated
amplitude data is normalized with the amplitude at the location x = 1.21, and the
disturbance phase θu is shown in radians. The agreement in the results between
the different forcing amplitudes in figures 10 and 11 indicates the linearity of the
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Figure 11. Comparison of the computed (—) maximum u-velocity amplitude (a) and phase
(b) amplification for Reδ = 173 and F = 482 with experimental results. The disturbances are
triggered by a loudspeaker at 1221Hz and have the amplitudes 0.3 % (�), 1.1 % (�) and 1.7 %
(�) at x =1.55. The grey line shows the amplification calculated with the Orr–Sommerfeld
equation applied to the interpolated experimental base flow.
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disturbance. Both the disturbance distribution and the amplification agree very well
for the different forcing amplitudes. An indication of the nonlinear effects appear
just after the location x = 1.55 where it shows up as lower amplification for the
larger forcing amplitudes. The agreement of the amplification between the measured
data and the PSE-results showed as the black solid line in figure 11(a) is not
satisfactory. This difference of the slopes of the amplitude curves implies a 40 %
higher growth rate in the experiment, approximately. To investigate how the base
flow difference affects the amplification, the Orr–Sommerfeld equation is applied to
the interpolated experimental base flow. The amplification, interpolated from the
eigenvalues at x = 1.03, 1.21, 1.38, 1.55, is shown as the grey line in figure 11(a) and
the agreement to the measured data is very good. This clearly shows that the difference
between the computed and experimental base flow is responsible for the disagreement
in amplification between the measured data and the stability calculations.

4.2.2. Stationary longitudinal streaks

The exponentially growing disturbances studied in the previous section are the
dominating instabilities of flows having a point of inflection. This is true for wall jets as
well as for free shear layers operated in a low-disturbance environment. On the other
hand, numerous studies of wall-bounded shear flows show that three-dimensional
disturbances of a different type may dominate in the breakdown process, especially
when the flow is highly disturbed, see e.g. Westin et al. (1994). The dominating role
of the longitudinal disturbances has been clarified recently by Balaras et al. (2001)
for highly disturbed free shear layers. As was mentioned in § 1, intermediate states
when both two- and three-dimensional disturbances exist are also possible for free
shear layers. A similar behaviour is expected for wall jets. In the current experiment,
streaks appear naturally from existing irregularities and amplification of vorticity in
the contraction. Since such longitudinal structures are also likely to exist in various
applications, this is a motivation to study the growth of streamwise streaks.

In the experiment, stationary longitudinal streaks are introduced into the flow by
periodically distributed roughness elements that are positioned on the top lip of the
orifice. In separate runs, five spanwise scales are generated corresponding to β from
0.175 to 0.574 by the roughness elements of corresponding width from 3 to 1 mm.
In figure 12(a), the spectral decomposition of the maximum streak amplitude for the
three largest spanwise scales, β = 0.264 (�), β =0.218 (�) and β = 0.176 (�), at the
streamwise location x = 1.55, is shown. The other two smallest scales are decaying in
the experiment. One of the introduced scales, β = 0.218, leads to the disturbance with
the largest amplitude and is optimal in this sense. Streaks of approximately this scale
are also visible for roughness-unforced flow in the nonlinear stage (see figure 14).
These streaks are, however, not stationary, contrary to the forced streaks, they move
slowly back and forth.

An idea of how the steady perturbations are selected in the wall-jet flow is directly
obtained by considering a plot of the maximized disturbance growth Gmax versus
the streamwise wavenumber. In figure 12(b), the computed optimal growth for ω =0,
x0 = 0.403 and x1 = 1.55 is shown as a function of the spanwise wavenumber. The
spanwise scale that grows the most is approximately β = 0.29. In calculations with
fixed x1, the optimal spanwise wavenumber decreases with decreased x0. However, for
practical reasons, to obtain an initial disturbance in the subsequently described DNS,
the initial position is set equal to the starting position of the fringe region. From the
comparison of the computed and experimental optimal spanwise scales in figure 12,
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Figure 12. (a) FFT of three spanwise wavelengths behind arrays of evenly distributed
roughness elements with width (half wavelength) 3mm (�), 2.5 mm (�) and 2 mm (�) from
measured streamwise disturbances at x1 = 1.55. (b) Computed optimal growth for ω = 0,
x0 = 0.403 and x1 = 1.55. Rel =1732 is used as the scale factor.

it can be observed that the computed scale is somewhat smaller, however, it is close
to that one observed in the experiment.

The optimal disturbance consists of streamwise vortices developing into streamwise
streaks. The resulting disturbance from the computation at x =1, for β =0.211, ω = 0,
x0 = 0.403 and x1 = 1.55, is shown to the left-hand side in figure 13, where one spanwise
wavelength of the disturbance is depicted. In figure 13(a), the cross-flow velocity
components are represented with arrows, and in figure 13(b), the streamwise velocity
is shown as contours. Positive values of disturbance velocity are shown by solid lines
and the dashed lines represent negative values. At the spanwise location z = 0, high-
momentum fluid is moved up from the jet core, producing a high-velocity streak in
the shear-layer region. An opposite motion is observed at the edges of the plot, half a
wavelength away, where low-momentum fluid is moved down from the upper velocity
field and low-velocity streaks are formed in the shear-layer region. Additionally, in the
boundary-layer region, a weak low-velocity streak is formed below the high-velocity
streak at z =0, since the upward motion of fluid there carries low-momentum fluid
from the wall region. In a similar way, weak high-velocity streaks are formed in the
boundary-layer region on the sides. Thus, the more complicated overall character of
the disturbance as compared to, for example, the flat-plate boundary layer is explained
by rather simple mechanisms, which in general are similar in the single-shear flow of
the flat plate and in the wall jet studied here. In figure 13(c), the computed (–) normal-
ized streamwise amplitude distribution at x1 = 1.55 is compared with the measured
results. The downstream response at the location x1 is insensitive to the choice of span-
wise wavenumber and initial position. The similarity between the amplitude functions
for the three largest scales in the experiment is also evident in figure 13(c). Since the
initial condition in the experiment is not the optimal one, we cannot expect to find the
calculated disturbance amplitude. However, as long as the initial streamwise vortex in
the experiment has a projection on the optimal disturbance, we can expect the final
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Figure 13. Downstream response of the computed optimal disturbance for β = 0.211, ω = 0,
x0 = 0.403 and x1 = 1.55. (a, b) The cross-flow plane at x = 1. Arrows represent cross-flow
velocity components (a) and contours show constant positive (—) and negative (− − −)
streamwise velocity (b). (c) Computed final streamwise amplitude velocity distribution (—),
normalized with its maximum value, compared with experimental results for β = 0.176 (�),
β =0.218 (�) and β = 0.264 (�).

computed velocity disturbance to agree with the measured one, as shown in
figure 13(c). This agreement and the fact that the computation contains an
optimization procedure while the experiment does not, indicate that a fundamental
mode is triggered in the flow. This has also been observed by, for example, Andersson
et al. (1999) and Westin et al. (1994) in the flat-plate boundary layer. These non-
modal growth mechanisms are referred to as algebraic growth. In the present work,
disturbances are triggered by the surface roughness, however, free-stream turbulence
is also a possible triggering mechanism, see, for example, Westin et al. (1994) for the
flat-plate boundary layer results.

4.3. Towards transition to turbulence

In this section, the transition process of the wall jet is studied. Two-dimensional eigen-
modes with the fundamental frequency and non-modal streaks are forced into the flow.

4.3.1. Overview of the transition process

The importance of the three-dimensional effects during flow breakdown is clearly
demonstrated by the performed flow visualizations, which are shown in figure 14. Two-
dimensional waves are excited by the loudspeaker and can be observed to develop
parallel to the nozzle edge. A laser sheet is pulsing, synchronized with the wave
frequency while smoke is provided into the inlet of the facility driving fan. With this
technique, the flow modulation can be visualized only in the top shear layer, where the
difference in the smoke concentration is clear. No special forcing is applied to generate
three-dimensional disturbances, as they appear naturally from existing irregularities.
Nevertheless, well-defined and nearly uniform streamwise vortices and streaks are vis-
ibly, forming in the flow. As can be seen in figure 14(a), initially the waves are dominat-
ing, while the streaks are rather weak. Further downstream, the streaky structures
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(a)

(b)

Figure 14. Visualization of the nonlinear structures in the wall jet. (a) Light sheet is placed
parallel to the wall at about 5mm from it (y = 30). The flow direction is down. (b) Light sheet
is perpendicular to the flow and placed at about 40mm (x = 2.3) downstream of the nozzle
outlet.

become dominating. In figure 14(b), the braid region of the wave is shown, which cor-
responds approximately to the mid streamwise location in figure 14(a). In the braids,
the streaks are well pronounced and they attain a typical mushroom shape. Also,
moving the visualization plane further from the wall, regions can be reached where
streak tips exist, while waves do not. In fact, the current visualization demonstrates a
very similar phenomenon as was observed by Bernal & Roshko (1986) and Lasheras
et al. (1986) in free shear layers. The streaks in the present case are generated by
irregularities in the facility. It is clear that disturbances associated with the streaks
are amplified from their upstream origin as the flow develops.

4.3.2. Spectral analysis

In the previous section, we saw that the role of the initial conditions for the develop-
ment of the wall jet is essential. To investigate the process of the breakdown in this
flow carefully and understand the nonlinear interactions involved, a direct numerical
simulation is necessary. A numerical study conducted in a highly controlled environ-
ment is free from various uncontrollable parameters, which make the numerical results
more straightforward to interpret than these obtained from the experiment. Two
instability modes, the two-dimensional waves and the streamwise streaks are observed
to trigger the breakdown of the wall jet to turbulence. These disturbances are excited in
the DNS in a controlled manner, as described in § 3.3.2, and the forcing functions are
taken from the previously obtained linear stability calculations (see figures 10 and 13).
The amplitudes of the waves and streaks are prescribed in the beginning of the
computational box to 0.1 % and 3 % of the wall-jet core velocity, respectively. The
amplitudes are chosen to obtain a similar transition scenario as in the experimental
wall jet seen in figure 14.

The streamwise development of the initially generated modes and the thereafter
exited modes of nonlinear interaction can be seen by looking at the development of
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Figure 15. Energy in different Fourier modes (ω1, β1) from the DNS. The initially excited
modes (waves and streaks) are shown by black solid lines, the nonlinearly generated modes
are shown by dashed and dotted lines. The modes are indicated in the figure. The pairing
mode grows up from numerical noise and is displayed by the thick grey line. Results from the
PSE (�) are shown for comparison.

the Fourier components shown in figure 15. For the Fourier transform, 16 evenly
distributed velocity fields in time, within two fundamental time periods, starting from
t = 10.95 are used. Eight modes are used in the spanwise direction. The velocity fields
are Fourier transformed in time and in the spanwise direction and the notation (ω1, β1),
where ω1 and β1 are the frequency and spanwise wavenumber, each normalized with
the corresponding fundamental frequency and wavenumber, is used. Thus, the waves
and the streaks are represented by (1, 0) and (0, 1), respectively, and are shown as black
solid lines in figure 15. Without nonlinear interactions, the instability modes should
amplify in agreement with the linear theory and this is observed in the beginning of
the computational box, where the waves grow exponentially and the streaks have an
algebraic growth. The results from the PSE (�) are shown for comparison and the
agreement is excellent. The waves grow according to the linear theory for surprisingly
large amplitudes while the nonlinear interactions for the streaks are encountered
earlier. It is evident that close to the slot, the two-dimensional effects are dominating
over the stronger forced stationary streaks. At about x = 1.3 to x = 1.4, nonlinear
effects start to be apparent when energy is transferred to the modes (1, 1), (2, 0) and
(2, 1). Further downstream, the streak mode (0, 1) is decaying and a dip in the energy
can be observed at approximately x = 1.55. At this location, the time-periodic mode
(1, 0) starts to saturate and an abrupt change of the breakdown process happens,
namely, an exponential growth of the streak mode.

There are two possible secondary instabilities on two-dimensional vortices generated
by inflectional shear-flow instabilities, a subharmonic one leading to vortex pairing,
and a three-dimensional one leading to spanwise modulation of the vortices (see e.g.
Metcalfe et al. 1987). In low-disturbance environments, the predominant secondary
instability is associated with vortex pairing. If the initial three-dimensional excitation
is large enough, the three-dimensional secondary instability is predominant, resulting
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Figure 16. Isosurfaces of streamwise velocity (light grey), normal velocity (medium grey)
and λ2 (dark grey) at an instant of t =12.70. The waves and streaks are forced with initial
amplitudes 0.1% and 3%, respectively, in the Blasius wall jet for Reδ = 173. The levels of the
isosurfaces are 0.1, 0.1 and −0.015, respectively.

in the growth of a spanwise modulation of the vortices. This results in a suppression of
the vortex pairing, and is what can be observed in the current numerical simulation.
We have seen that the exponentially growing two-dimensional waves break down
owing to what appears to be a three-dimensional secondary instability triggered by
the presence of the streaks. In order to asses whether the pairing mode (1/2, 0)
is present in the simulation, the energy content in this subharmonic frequency is
evaluated and shown as the grey line in figure 15. However, since this mode is not
forced (in the fringe region), but only grows out of numerical noise, its amplitude is
small. Upstream of the location where nonlinear interactions set in, the amplification
rate of the subharmonic mode is about half of the fundamental one. This is consistent
with linear theory (see figure 9d), indicating that an eigenmode with the subharmonic
frequency F = 241 is born. At about x =1.55, the amplification rate doubles as a
result of nonlinear effects. However, the energy content in this mode stays at least
one magnitude below the exponentially growing streak mode.

4.3.3. Flow structures

From the performed numerical simulation, structures appearing in the flow can be
visualized and contribute to an increased understanding of the transition process, com-
plementing the above discussion. In figure 16, positive isosurfaces of the instantaneous
streamwise and normal velocity are displayed in light and medium grey, respectively,
at t = 12.70. Vortical structures can be identified in the flow by plotting regions where
the second largest eigenvalue λ2 of the Hessian of the pressure assumes negative values
(Jeong et al. 1997). The vortical structures in figure 16 are represented by dark grey
isosurfaces displaying a constant negative value of λ2. At the instantaneous moment
shown in the figure, the waves are most pronounced in the beginning of the box,
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where the waves have already started to saturate. Counterclockwise rotating rollers
are moving with the wave troughs in the outer shear layer, of which one is visible
at about x = 1.7. Slightly downstream of each shear-layer roll-up, clockwise rotating
rollers in the boundary layer exist, one of these is visible at about x = 1.8. Associated
with the boundary-layer rollers are small regions of separated flow. Between the rollers
in the outer shear layer and in the boundary layer, inclined regions of upward flow
feed the next downstream wave crest. The presence of the streaks deforms the rollers
in the spanwise direction. (This is also visualized in figure 20, where only the vortical
structures are shown for different instants within one fundamental period.) At about
x = 1.9, in figure 16, the high-velocity streak becomes dominant and is lifted up from
the shear-layer region forming a mushroom-shaped structure. Such structures were
also observed by, for example, Wernz & Fasel (1996, 1997) and Gogineni & Shih
(1997).

Figure 17 shows six cross-flow slices from the instantaneous flow field presented in
figure 16. The arrows represent the cross-flow velocity while the black solid lines show
contours of positive streamwise velocity. Contours of negative or zero streamwise
velocity are shown by dotted lines. The thick grey lines show the core of vortical
structures at the same level of λ2 as in figure 16. The first slice, shown in figure 17(a),
is a cut through the boundary-layer roller at x = 1.8 and the region of inclined upward
flow. A small region of separated flow exists close to the wall. The streak is visible in
the outer shear layer where it shows up as a bump in the streamwise velocity contours.
This bump is more pronounced in the next slice, depicted in figure 17(b), which shows a
cut through the downward flow at x =1.9. In the slice at x = 2.0, shown in figure 17(c),
most of the flow is moving upward and the lift-up of the streak in the ambient flow
results in a mushroom-shaped structure. Another small separation bubble can be seen
at the wall. The mushroom leg, where the upward motion is strongest, is formed by the
combined effect of the upward wave motion and the high-velocity streak. In the top of
the upward motion, a vortex pair is forming the mushroom hat. The vortex pair in the
mushroom hat separates from its leg and continues upwards through the otherwise
mainly downward motion in figure 17(d), which shows the slice at x = 2.1. The break-
down to turbulence is associated with this upper vortex pair. In the slice at x = 2.2,
shown in figure 17(e), it can be seen that the outer part of the wall jet is turbulent
while the inner part remains organized. However, the turbulence spreads towards the
wall further downstream and the flow undergoes transition to a fully turbulent wall
jet. Figure 17(f ) shows the slice at x = 2.3 where the flow is almost fully turbulent.

Figure 18 allows us to follow the streamwise vorticity in the instantaneous flow field,
shown in figure 16, through 12 cross-flow slices. The slices are evenly distributed in
space from x = 1.9 to x =2.35 and black solid lines show contours of positive stream-
wise vorticity while contours of negative values are displayed by grey solid lines. The
line increment is 0.1, but the zero contour is not shown. In figure 18(c), the streamwise
vorticity associated with the mushroom-shaped structure in figure 17(c) can be seen.
The hat and the leg of the mushroom-shaped structure are indicated in the figure.
Further downstream, in figure 18(e), the hat can be found in the upper part, while the
leg splits up and moves with the downward flow towards the edges of the slice. In the
slice, shown in figure 18(f ), the first signs of breakdown to turbulence can be seen
above the mushroom hat. In the slices, shown in figures 18(g)–18(j ), the turbulence
spreads downward. However, the flow close to the wall is still organized. Through
these slides, a Λ-structure in the boundary layer at the wall can be identified and is
indicated with Λ in figure 18(i). Such structures are typical for Klebanoff transition
in boundary layers (e.g. Bake, Meyer & Rist 2002). Figure 19 shows the streamwise
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Figure 17. Cross-flow planes from the instantaneous data shown in figure 16. Arrows represent
the cross-flow velocity while the streamwise velocity is displayed by contours with line increment
0.1. Positive values are displayed by solid lines and negative or zero values by dotted lines.
Thick grey lines show the core of vortical structures where λ2 = −0.015.

vorticity in a slice parallel to the wall at y =20. It covers a longer region and further
demonstrates the three-dimensional flow behaviour and the breakdown to turbulence.

Figure 20 shows the time development of the vortical structures in one fundamental
disturbance period starting from t = 13.31. The vortex visualization uses instantaneous
data from the DNS at six evenly distributed instants. Vortex rollers are moving
downstream in the outer shear layer and in the boundary layer. The high-velocity
streak in the outer shear layer deforms the roll-up and gives it a bent shape. The
corresponding low-velocity streak in the boundary layer induces a bent shape in the
opposite direction to the vortex roller in the boundary layer. The interaction between
these counter-rotating rollers contributes to the three-dimensional modification of the
boundary-layer roller. At the left-hand side of figure 20(b), the curved rollers can
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Figure 18. Contours of streamwise vorticity in cross-flow planes from the instantaneous data
shown in figure 16. The streamwise positions are indicated in the figure. Black lines show
positive values and grey lines negative values, the line increment is 0.1, but the zero contour is
not displayed.
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Figure 19. Contours of streamwise vorticity in the horizontal plane at y = 20 from the
instantaneous data shown in figure 16. Black lines show positive values and grey lines negative
values, the line increment is 0.1, but the zero contour is not displayed.

be seen. Between the rollers, the flow is pushed upward and forward and inclined
rib vortices are created. The rib vortices extend from above the shear-layer roller to
beneath the previous one, see figure 20(c). Such rib vortices have been observed in
many experimental and computational studies of mixing layers (e.g. Bernal & Roshko
1986; Lasheras et al. 1986; Metcalfe et al. 1987; Schoppa, Hussain & Metcalfe 1995).
The rib vortices are close together at the tails and wider apart at the tips. At about
x = 2.0, in figure 20(d), the upward flow is pushing the rib vortices upward, where
they are forming the hat of the mushroom-shaped structure. The tails of the rib
vortices, at about x =1.9, keep the normal position. The tails of the previous rib
vortices separate around the upcoming rib vortices. Figure 20(d) shows the instant
exactly two fundamental periods after the instantaneous data shown in figures 16–19.
The separated legs of the previous rib vortices forms a Ω-shaped vortex ring around
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Figure 20. Vortex visualization (isosurfaces of λ2 = −0.015) using instantaneous data from
the DNS at six instants within one fundamental disturbance period T : (a) t = 0, (b) t = 0.2T ,
(c) t = 0.4T , (d) t =0.6T , (e) t = 0.8T , (f ) t = T .

the upcoming rib vortices, see figure 20(e). In front of this vortex ring another
counter-rotating vortex ring is created (at about x =2.1 in figure 20f ). The vortex
ring formation precedes the breakdown to turbulence. In the end of the lower part of
the box, in figure 20(c), where the flow is not yet turbulent, the Λ-structure between
the wall and the roller in the boundary layer can be seen.

The coincidence of the numerical visualization with the experimental visualizations
of figure 14 is clear; namely, it is seen that in the outer region of the wall jet, the
large-amplitude streak structures dominate the late stage of flow breakdown. Both
in the computations and in the experiments, a staggered formation of streaks can be
observed. The strong three-dimensionality is formed only a certain distance from the
nozzle outlet.
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4.4. Subharmonic waves and pairing

In this section, the role of the subharmonic waves is investigated. Two additional
simulations are performed, one with the streaks, the fundamental and subharmonic
waves forced in the flow and the other with only the fundamental and subharmonic
waves and noise in the initial field.

Free mixing layers are known to undergo pairing of the fundamental vortex rollers
preceding the breakdown to turbulence (Ho & Huerre 1984; Metcalfe et al. 1987;
Moser & Rogers 1993; Rogers & Moser 1993; Schoppa et al. 1995). Further down-
stream in the turbulent flow region, spanwise coherent structures may also be observed,
where they coexist with fine-scale motion (Konrad 1976). The pairing originates from
a subharmonic wave displacing one vortex to the low-velocity region and the next to
the high-velocity region. The vortex travelling in the high-velocity region overtakes
the slower-moving vortex in the low-velocity region, and pairing appears. The relative
phasing of the fundamental and subharmonic disturbances influences the development
of the pairing. The three-dimensional modification of the spanwise rollers has been
studied numerically by Moser & Rogers (1993), Rogers & Moser (1993) and Schoppa
et al. (1995) and experimentally by Tung & Kleis (1996). Pairing is found to inhibit the
growth of infinitesimal three-dimensional disturbances, and to trigger the transition
to turbulence in highly three-dimensional flows. If the amplitude of the initial three-
dimensional disturbances is large enough, transition occurs before the pairing takes
place. Vortex pairing has also been observed in wall jets (e.g. Bajura & Catalano
1975; Wernz & Fasel 1996).

In order to determine the role of pairing in the Blasius wall jet, the subharmonic
disturbance is studied. The Orr–Sommerfeld mode with half the frequency of the
fundamental one is forced in the DNS, as described in § 3.3.2. Figure 21 shows the
spanwise vorticity in the (x, y)-plane at z =14.9 from instantaneous data at t = 12.70
for three different forcing cases. Black solid lines show contours of positive spanwise
vorticity while contours of negative values are displayed by grey solid lines. The line
increment is 0.1, but the zero contour is not shown. In Case 1, shown in figure 21(a),
streaks and fundamental waves are forced (the simulation described in § 4.3). In Case 2,
shown in figure 21(b), subharmonic waves are forced in addition to the streaks and
the fundamental waves. In Case 3, shown in figure 21(c), only fundamental and
subharmonic waves are forced. In the absence of the three-dimensional streak, a low
level of noise is added to the initial field to introduce three-dimensionality to the
flow. The pairing mode is weak in Case 1, as is also seen in the energy content of
the corresponding Fourier mode (1/2, 0) in figure 15. In this case pairing does not
occur. In Case 2 and 3, the pairing mode is stronger and can be seen as the staggered
pattern of the vortex rollers in the outer shear layer. However, in Case 2, pairing does
not occur before the breakdown to turbulence. In Case 3, pairing occurs between
rollers in the outer shear layer as well as in the boundary layer. Signs of breakdown
are first seen in the vortex pair close to the wall in the very end of the box. It can be
noted that the vorticity is stronger and breakdown to turbulence is enhanced in the
presence of the streak. Figure 22(a–c) shows the spanwise vorticity in a cross-flow
slice at x = 2.1 for the corresponding flow cases. From this figure the difference in the
three-dimensional modification becomes clear.

5. Summary and conclusion
The dynamics of a plane wall jet is studied using both calculations and experiments.

It is found that a laminar wall jet can be successfully described by the solution of
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Figure 21. Contours of spanwise vorticity in the (x, y)-plane at z = 14.9. Black lines show
positive values and grey lines negative values, the line increment is 0.1, but the zero contour is
not displayed. (a) Streaks and fundamental waves are forced, same instantaneous data as in
figure 16. (b) Streaks, fundamental and subharmonic waves are forced. (c) Fundamental and
subharmonic waves are forced.
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Figure 22. Contours of spanwise vorticity in the cross-flow plane at x = 2.1 from the
instantaneous data shown in figure 21. Black lines show positive values and grey lines negative
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(c) Fundamental and subharmonic waves are forced.
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the boundary-layer equations. The so-called Blasius wall jet, which is matched to the
experimental data, is valid in the region just downstream of the nozzle in contrast to
the well-known Glauert similarity solution valid further downstream. Comparison of
the results of linear stability calculations with experiments shows that the theory is able
to predict the most amplified frequency of the periodical waves and the most amplified
scale of the streaks. However, the difference in the upper part of the base flow causes an
underprediction of the calculated modal amplification. Orr–Sommerfeld calculations
demonstrate that the interaction of the two layers of the Blasius wall jet is affecting
the stability of both layers. Because of this interaction, the shear-layer part of the jet is
stabilized and the boundary-layer part is destabilized. Critical Reynolds numbers are
affected in the same manner. The stabilization effect increases with increased interac-
tion between the layers. The local stability approach is shown to work rather well.

In the experiment, streamwise streaks appear naturally in the flow. Linear stability
analysis demonstrates a rather large growth of non-modal streaks and this mechanism
is responsible for the generation of initial three-dimensionality of the wall jet. Addi-
tional support of this conclusion is the excellent agreement between the calculated and
measured amplitude functions of the streak. An optimal, most amplified scale exists for
the stationary streaks both in the calculations and in the experiment. The calculations
indicate that the optimal disturbance represents streamwise vortices, which cause
the formation of streaks by the so-called lift-up effect. The mechanism of non-modal
growth may affect the selection of scales in the secondary instability of spanwise vortex
rollers and thereby the three-dimensional modification preceding flow breakdown.

The nonlinear stage of the laminar flow breakdown is studied with DNS and is
experimentally visualized. Three-dimensional simulations with coherent forcing are
performed and they clearly demonstrate that growing streaks are important for the
breakdown process. It is found that the forcing of streamwise streaks feed into the
three-dimensional secondary instability preceding the flow breakdown. As a result,
the three-dimensionalities in the flow are enhanced and the other possible secondary
instability of the flow, namely the subharmonic pairing of the spanwise vortices, is
suppressed. The transition mechanisms can be described by the following stages.
(i) Spanwise rollers are formed in the wave troughs in the outer shear layer and move
downstream. In the boundary layer close to the wall beneath the wave crests, counter-
rotating rollers are formed. (ii) In the presence of streaks, the shear-layer rollers are
sinuously modified in the spanwise direction with the boundary-layer rollers deforming
in the opposite direction. (iii) Vortex ribs are formed in the braids of the waves,
extending from the top of the shear-layer roller to the bottom of the previous one.
(iv) The vortex ribs follow the upward flow between two neighbouring shear-layer
rollers and are associated with mushroom-shaped structures ejected from the wall jet
into the ambient flow. (v) The tail legs of the vortex ribs, generated one fundamental
period earlier, separate and form a vortex ring around the upcoming vortex ribs
and additional counter-rotating vortex rings are created preceding breakdown to
turbulence.

Both the experiment and the DNS reveal that the flow history is extremely important
for the transition scenario. In the experiment, the flow is subjected to disturbances
already in the apparatus (settling chamber, contraction and nozzle). In the simulations,
different forcings of the upstream disturbances lead to different transition scenarios.
In order to determine the role of pairing in the Blasius wall jet, the subharmonic
disturbance is studied. In total three different forced simulations are performed.
(i) Streaks and fundamental waves. (ii) Streaks, fundamental and subharmonic waves.
(iii) Fundamental and subharmonic waves and noise. When the subharmonic
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disturbance is not forced in the flow, the pairing mode is weak and pairing does
not occur. When the subharmonic disturbance is forced, the pairing mode is stronger
and can be seen as the staggered pattern of the vortex rollers in the outer shear
layer. However, pairing does not occur before the breakdown to turbulence in the
presence of streaks. It can also be concluded that vorticity is stronger and breakdown
to turbulence is enhanced in the presence of streaks.

This work was funded by the Swedish Energy Agency (Energimyndigheten). The
direct numerical simulations was performed at the Center for Parallel Computers at
KTH. Many thanks to Mattias Chevalier for the help with various modifications
of the spectral code and to Professor Victor Kozlov for the help with the smoke
visualizations and for the loan of the laser. Maria Litvinenko has taken part in the
experimental measurements which we gratefully acknowledge.

Appendix. Optimization procedure
In this Appendix, the optimization procedure for the optimal disturbances in the

algebraic instability problem is derived. We adopt an input–output formulation of
the initial-boundary-value problem (3.2)–(3.4)

û1 = Aq, (A 1)

where A is a linear operator. The maximum Reynolds-number-independent growth
may then be written

Gmax = max
q �=0

(û1, û1)u
(q, q)q

= max
q �=0

(A∗Aq, q)q
(q, q)q

. (A 2)

Here, A∗ denotes the adjoint operator to A with respect to the chosen inner product.
The maximum of (A∗Aq, q)/(q, q) is attained for some vector q, which is the
eigenvector corresponding to the largest eigenvalue of the eigenvalue problem

A∗Aq = λq, (A 3)

where Gmax is the maximum eigenvalue λmax, necessarily real and non-negative. The
most natural attempt to calculate the optimal initial disturbance and its associated
maximum Reynolds-number-independent growth is by power iterations

qn+1 = A∗Aqn, (A 4)

where the initial disturbance is scaled to the given initial energy in each iteration. To
be able to perform the power iterations, we need to know the action of the adjoint
operator on û1. The following adjoint system can be derived from (3.2)–(3.4) with
α = 0 and p̂x =0, by integration by parts

−v∗
y + iβw∗ = 0, (A 5a)

−iωu∗ − Uu∗
x − Vyu

∗ − V u∗
y + Vxv

∗ − p∗
x = u∗

yy − β2u∗, (A 5b)

−iωv∗ − Uv∗
x − Uxv

∗ − V v∗
y + Uyu

∗ − p∗
y = v∗

yy − β2v∗, (A 5c)

−iωw∗ − Uw∗
x − V w∗

y + iβp∗ = w∗
yy − β2w∗, (A 5d)

where p∗(x, y), u∗(x, y), v∗(x, y) and w∗(x, y) are the adjoint variables with boundary
conditions

u∗ = v∗ = w∗ = 0 at y = 0,

u∗ = w∗ = p∗ + 2V v∗ = 0 at y = ymax.

}
(A 6)
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The x-derivative in the parabolic set of equations (A 5) has opposite sign compared
to (3.2) and the problem has to be solved in the backward direction from the final
position x1 to the initial position x0. Therefore, the initial condition is specified at x1

U1u
∗
1 + p∗

1 = û1(y) at x = x1,

v∗
1 = w∗

1 = 0 at x = x1.

}
(A 7)

The action of the adjoint operator is given by

v̂0 = U0(y)v∗
0(y) at x = x0,

ŵ0 = U0(y)w∗
0(y) at x = x0.

}
(A 8)

The adjoint-based optimization algorithm is very efficient and converges often within
three to four iterations, indicating the existence of a well-separated dominating mode.
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